Cohomology of regular differential forms for affine curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of regular differential forms for affine curves

Let C be a complex affine reduced curve, and denote by H1(C) its first truncated cohomology group, i.e. the quotient of all regular differential 1-forms by exact 1-forms. First we introduce a nonnegative invariant μ(C, x) that measures the complexity of the singularity of C at the point x, and we establish the following formula: dim H(C) = dim H1(C) + ∑

متن کامل

Differential Forms and Cohomology

Definition 1. An m-linear function f which maps the m-fold cartesian product V m of a vector space V into some other vector space W is called alternating if f(v1, . . . , vm) = 0 whenever v1, . . . , vm ∈ V and vi = vj for i 6= j. We let ∧ (V ,W ) be the vector space of mlinear alternating functions mapping V m intoW . We then define ∧m V by the property that if f ∈ ∧m(V,W ) then there exists a...

متن کامل

A Cohomology for Vector Valued Differential Forms

A rather simple natural outer derivation of the graded Lie algebra of all vector valued differential forms with the Frölicher-Nijenhuis bracket turns out to be a differential and gives rise to a cohomology of the manifold, which is functorial under local diffeomorphisms. This cohomology is determined as the direct product of the de Rham cohomology space and the graded Lie algebra of ”traceless”...

متن کامل

SOBOLEV INEQUALITIES FOR DIFFERENTIAL FORMS AND L q , p - COHOMOLOGY

We study the relation between Sobolev inequalities for differential forms on a Riemannian manifold (M, g) and the Lq,p-cohomology of that manifold. The Lq,p-cohomology of (M,g) is defined to be the quotient of the space of closed differential forms in L(M) modulo the exact forms which are exterior differentials of forms in L(M).

متن کامل

Differential Operators and Cohomology Groups on the Basic Affine Space

We study the ring of differential operators D(X) on the basic affine space X = G/U of a complex semisimple group G with maximal unipotent subgroup U . One of the main results shows that the cohomology group H(X,OX) decomposes as a finite direct sum of non-isomorphic simple D(X)modules, each of which is isomorphic to a twist of O(X) by an automorphism of D(X). We also use D(X) to study the prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2006

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2005.11.002